Hi,
I followed this tutorial to calculate the isotropic Eliashberg function using optdriver = 7 and eph_task = 1. After completing the tutorial, I encountered three questions:
1.In the tutorial, Ξ» is defined as:
Ξ» = \int^\ \frac{Ξ±^2F(π)}{π}\ dπ\,
However, in Phys. Rev. B 6, 2577β2579 (1972), equation (5) defines Ξ» as:
Ξ» = 2\int^\ \frac{Ξ±^2F(π)}{π}\ dπ\,
Why is there a factor of two difference between the two equations?
2.There are three input variables in EPH: ddb_ngqpt, eph_ngqpt_fine and ph_ngqpt.The output file _NOINTP_A2FW uses the eph_ngqpt_fine q-mesh, and _A2FW uses the ph_ngqpt q-mesh.
My question is, why does _NOINTP_A2FW not use the ddb_ngqptq-mesh, and why does _A2FW not use the eph_ngqpt_fine q-mesh?
What is the difference between eph_ngqpt_fine and ph_ngqpt?
Additionally, my _A2FW file often contains negative Ξ±^2F(π) values. How can I resolve this issue?
3.When I use eph_task = 1, the log output provides two different values for Ξ» and four different ππππ.
When I analyze the _A2F.nc file using Abipy, it only gives me two values for Ξ» and ππππ. I understand that one set is from the coarse grid, and the other set is from the fine grid.
Why are there four different ππππ values in log file?
Below is from log file:
a2fw_init, q-setup: , wall: 0.00 [s] , cpu: 0.00 [s] <<< TIME
a2fw_init%tetra , wall: 0.00 [s] , cpu: 0.00 [s] <<< TIME
Allocating tetra%ibz%indexes with memory: 0.1 [Mb] <<< MEM
a2fw_init, a2f_eval: , wall: 0.01 [s] , cpu: 0.01 [s] <<< TIME
isotropic new_lambda = 3.832022E-01
new_omegalog = 2.384671E-03 (Ha) 7.530185E+02 (Kelvin)
MacMillan Tc = 4.327783E-06 (Ha) 1.366604E+00 (Kelvin)
Superconductivity: isotropic evaluation of parameters from electron-phonon coupling (coarse grid).
isotropic lambda = 3.832022E-01
omegalog = 5.686654E-06 (Ha) 1.795701E+00 (Kelvin)
MacMillan Tc = 1.032034E-08 (Ha) 3.258901E-03 (Kelvin)
positive moments of alpha2F:
lambda <omega^2> = 2.392245E-06
lambda <omega^3> = 6.267588E-09
lambda <omega^4> = 1.679091E-11
lambda <omega^5> = 4.588390E-14
a2fw_init, q-setup: , wall: 0.01 [s] , cpu: 0.01 [s] <<< TIME
a2fw_init%tetra , wall: 0.01 [s] , cpu: 0.01 [s] <<< TIME
Allocating tetra%ibz%indexes with memory: 0.3 [Mb] <<< MEM
a2fw_init, a2f_eval: , wall: 0.02 [s] , cpu: 0.02 [s] <<< TIME
isotropic new_lambda = 6.198311E-01
new_omegalog = 1.808989E-03 (Ha) 5.712329E+02 (Kelvin)
MacMillan Tc = 3.679088E-05 (Ha) 1.161763E+01 (Kelvin)
Superconductivity: isotropic evaluation of parameters from electron-phonon coupling (interpolated).
isotropic lambda = 6.198311E-01
omegalog = 3.272441E-06 (Ha) 1.033354E+00 (Kelvin)
MacMillan Tc = 6.655430E-08 (Ha) 2.101616E-02 (Kelvin)
positive moments of alpha2F:
lambda <omega^2> = 3.122442E-06
lambda <omega^3> = 7.912706E-09
lambda <omega^4> = 2.053287E-11
lambda <omega^5> = 5.398147E-14
dataset: 1 , wall: 4.06 [s] , cpu: 3.53 [s] <<< TIME
Below is from Abipy:
============================== E-PH calculation ==============================
K-mesh for electrons:
mpdivs: [12 12 12] with shifts [[0. 0. 0.]] and kptopt: 1
a2f(w) on the [12 12 12] q-mesh (ddb_ngqpt|eph_ngqpt)
Isotropic lambda: 0.38, omega_log: 0.065 (eV), 752.400 (K)
Tc[mu=0.1]: 2.4504527860423733 (K)
Tc[mu=0.16]: 0.2652779934413205 (K)
a2f(w) Fourier interpolated on the [20 20 20] q-mesh (ph_ngqpt)
Isotropic lambda: 0.62, omega_log: 0.049 (eV), 571.772 (K)
Tc[mu=0.1]: 14.395607170946752 (K)
Tc[mu=0.16]: 6.939494768109583 (K)
calc.in (1.9 KB)
calc.abo (123.6 KB)
calc.log (183.2 KB)
odat_NOINTP_A2FW.txt (76.4 KB)
odat_A2FW.txt (76.4 KB)
Abipy.log (1.8 KB)